Effects of Topical Application and Oral Intake of *Rosa Damascena* on Adults’ Acute Pain: A Systematic Review and Meta-Analysis

Seyedeh Atefeh Koohpayeh¹, Meimanat Hosseini²*, Morteza Nasiri³,⁴ and Masoud Rezaei⁵,⁶

¹MSc Student of Community Health Nursing, Student Research Committee, Department of Community Health Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran. (Email: Skoohpayeh@sbmu.ac.ir)

²Associate Professor of Nursing, Department of Community Health Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran. (Email: M_hoseini@sbmu.ac.ir)

³PhD Student of Nursing, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran. (Email: M_nasiri@sums.ac.ir)

⁴Department of Operating Room Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran. (Email: Mortezanasiri.or87@yahoo.com)

⁵PhD Student of Nursing, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran. (Email: Masoud.rezaei68@yahoo.com)

⁶Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran.

Received: 13 November 2020
Accepted: 19 June 2021

*Corresponding to: M_hoseini@sbmu.ac.ir
DOI 10.5001/omj.2022.33

Abstract

Recent studies have reported conflicting results regarding the pain-alleviating effects of *Rosa Damascena* in topical and oral administration forms. Therefore, we evaluated the potential effects of topical application and oral intake of this herbal medicine on adults’ acute pain severity in a meta-analysis. A systematic search was performed on the Cochrane Central Register of Controlled Trials, PubMed, Scopus, Web of Science Core Collection, Embase,
Cumulative Index to Nursing and Allied Health Literature, SID, and MagIran from inception to March 20, 2021. We included parallel-group and cross-over randomized controlled trials (RCTs) that compared the effects of any products of \textit{Rosa Damascena} in oral and topical administration forms to placebo, non-treatment, or conventional treatment. Two independent researchers performed study screening and selection, data extraction, and risk of bias assessment. A random-effect model was used to pool the data. Of the 11 studies that met the inclusion criteria, four and seven administered \textit{Rosa damascena} through topical application and oral intake, respectively. The oral intake of \textit{Rosa damascena} reduced pain severity non-significantly [standardized mean difference (SMD): \(-0.55\); 95\% confidence interval (CI): \(-1.27, 0.17\); \(P=0.132\)]. However, the topical application of this treatment had no pain-alleviating effect [SMD: 0.10; 95\% CI: \(-0.75, 0.96\); \(P=0.814\)]. Most studies (\(n=6\)) had fair methodological quality, and one reported mild allergic rhinitis as an adverse effect of the treatment. Further robust RCTs are suggested to compare the effects of oral intake and topical application of \textit{Rosa damascena} on the severity of different types of acute pain in adults.

\textbf{Keywords}: Acute pain; Adult; Analgesics; \textit{Rosa Damascena}; Review.

\textbf{PROSPERO number}: CRD42020205071

1. Introduction

\textit{Rosa Damascena} (\textit{R. Damascena}), commonly known as \textit{Damask Rose}, is a medicinal herb belonging to the \textit{Rosaceae} family \(^1\). This herb is cultivated in Iran, Bulgaria, Pakistan, Turkey, Morocco, and India \(^2\). \textit{R. Damascena} is considered as the flower’s king because it is the sign of purity, inspiration, love, happiness, and beauty \(^3\). In addition, \textit{R. Damascena} is commonly known as “\textit{Gole-Mohammadi}” by Muslims, because its fragrance reminds them of “\textit{Prophet Muhammad}” \(^4\).
R. Damascena is currently used in food, perfume, cosmetic, and pharmacological industries worldwide. The pharmacological properties of this herb are attributed to a high percentage of glycosides, terpenes, flavonoids, and anthocyanins. Traditionally, different products of *R. Damascena* have been used for managing erectile dysfunction, arthritis, hepatitis, cardiovascular disorders, respiratory tract infections, and digestive disorders. Also, *R. Damascena* is suggested to alleviate pain in traditional and modern medicine.

In Persian traditional medicine, *R. Damascena* is used as one of the most popular analgesic agents. Recently, *R. Damascena* has been evaluated for its pain-alleviating properties in both *in vivo* and *in vitro* studies.

Recent reviews have suggested positive effects of *R. Damascena* in aromatherapy form on reducing pain severity. However, potential pain-alleviating effects of this herbal medicine in oral and topical forms have not yet been addressed in a comprehensive review. Based on the recent randomized controlled trials (RCTs), topical application or oral intake of *R. Damascena* induced alleviating effects in pregnancy-related low back pain, menstrual-related pain, post-operative pain, and aphthous stomatitis-induced pain. On the contrary, two RCTs found no significant difference in sexual-related pain among women who received *R. Damascena* capsule compared to those who received placebo capsule. Similarly, no significant difference was reported between students’ menstrual-related abdominal pain when they received *R. Damascena* and Mefenamic acid capsules in a crossover design. In addition, oral intake of *R. Damascena* had a non-significant alleviating effect on menstrual-related abdominal pain and headache among females with primary dysmenorrhea (PD) and premenstrual syndrome (PMS). Moreover, topical application of this herbal medicine had no significant effects on pain induced by migraine headache and aphthous ulcers.
Although the results of recent RCTs are inconclusive on the pain-alleviating effects of *R. Damascena* in topical and oral administration forms, to the best of our knowledge, no review has yet synthesized the conflicting findings of these RCTs. Therefore, we aimed to systematically identify and summarize the results of recent RCTs regarding the effects of topical application and oral intake of *R. Damascena* on adults’ acute pain severity and also to pool the obtained findings in a meta-analysis.

2. Methods

This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42020205071). The review was also reported based on the statements presented by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)\(^\text{44}\).

2.1. Search strategy

A systematic search was performed on the Cochrane Central Register of Controlled Trials, PubMed, Scopus, Web of Science Core Collection, Embase, Cumulative Index to Nursing and Allied Health Literature, Scientific Information Database (http://www.sid.ir/), and MagIran (http://www.magiran.com). All data sources were searched by two independent researchers two times: initially from inception to October 30, 2020; and second from October 30, 2020, to March 20, 2021. Moreover, the Iranian Registry of Clinical Trials and the World Health Organization International Clinical Trials Registry Platform were searched to find other probable related clinical trials. The corresponding authors of the retrieved trials were contacted via email to get information on their trials. Likewise, the reference lists of the eligible trials were checked to avoid missing related studies.

A combination of the following keywords was used in the systematic search: (Rosa OR Rose OR Rosaceae OR Rosewater OR "Rose water" OR "Rose oil" OR "Rosa damascena" OR "R. Damascena" OR "R. X damascena" OR "Damask rose" OR "Rose damask" OR
"Damascus rose" OR "Gole Mohammadi" OR Gol-E-Muhammadi OR Gol-E-Mohammadi) AND (Oral OR Supplement* OR Syrup OR Suspension* OR Emulsion OR Linctus OR Drop* OR Solution OR Extract* OR Oil* OR Capsule* OR Tablet OR Spray OR Ointment* OR Gel* OR Cream OR Lotion OR Massage OR Topical) AND (Pain OR Analgesi* OR Antinocicepti*). To find all possibly related studies, no restrictions were applied with regard to studies' participants, clinical conditions, language, and publication date in the literature search.

2.2. Eligibility criteria and studies selection

The studies were included based on the elements of the PICOS question, including participants, intervention, comparison, outcomes, and study design (Table 1). Studies were excluded if they: (a) were without available English abstract; (b) were conference papers, theses, letters, comments, short communications, reviews, meta-analyses, and animal studies; (c) administered *R. Damascena* in aromatherapy form; (d) administered *R. Damascena* in combination with other herbal products; (e) administered other species of Rosa; (f) recruited individuals who experienced chronic pain; and (g) recruited individuals over 60 years of age. Also, if studies conducted over the same participants, once with limited data were excluded.

Table 1: Inclusion criteria for considering studies on the effects of topical application and oral intake of *Rosa Damascena* on adults’ acute pain.

<table>
<thead>
<tr>
<th>Items</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Individuals within the age range of 18-60 years who experienced any types of moderate to severe acute pain</td>
</tr>
<tr>
<td>Intervention</td>
<td>Administration of any products of Rosa Damascena (e.g., essential oil, extract, absolute or concrete, syrup or juice, Jollab, petal jam, Gulkand, rose water, tea, drop, capsule, mouthwash) in the form of topical application or oral intake for a treatment group</td>
</tr>
<tr>
<td>Comparison</td>
<td>Placebo treatment, non-treatment, and conventional treatment</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Pain severity, analgesics use, adverse effects of the treatment</td>
</tr>
<tr>
<td>Study design</td>
<td>Parallel-group and cross-over randomized controlled trials</td>
</tr>
</tbody>
</table>
The studies' screening and selection were performed by two independent researchers. In total, 1429 records were found from the electronic search. Based on the screening of title and abstract of 953 records, 938 were removed and full-texts of the 15 remaining studies were assessed for compliance with the inclusion criteria. Of these, two redundant publications \(^{43,45}\), and a single-group study \(^{39}\) were excluded. Also, one study that recruited individuals over 60 years of age was excluded \(^{34}\). Finally, 11 studies were considered eligible for this review \(^{24-32,34,36}\) (Figure 1).

Figure 1: PRISMA flow diagram for identification of the studies and selection process.
2.3. Data extraction

The following data were extracted for each study by two independent researchers: (a) study details; (b) participants’ characteristics; (c) intervention details; and (d) mean or mean changes and standard deviation (SD), as well as number and percentage for the measured outcomes. In four studies with multiple intervention groups, data were extracted from the *R. Damascena* and control groups 26,29,35,36. Of these, one considered both placebo and non-treated groups; hence, data were extracted from the placebo group for comparison 36. If the studies contained unclear or insufficient information, the study authors were contacted via email or phone call to get additional information on their studies. Any disagreement in data extraction between the researchers was resolved by discussion.

2.4. Assessment of risk of bias

The risk of bias for each included study was assessed by two independent researchers using the Cochrane Risk of Bias Assessment Tool, which consists of seven items: (a) random sequence generation (selection bias); (b) allocation concealment (selection bias); (c) blinding of participants and personnel (performance bias); (d) blinding of outcome assessment (detection bias); (e) incomplete outcome data (attrition bias); (f) selective reporting (reporting bias), and (g) other biases 46. Disagreements between the researchers were resolved by consensus with a third researcher.

2.5. Data analysis

Studies recorded pain at different post-treatment times; hence, we calculated the changes of mean and SD in each study group by comparing the baseline and the end-of-trial values, using standard methods 42,47. In a cross-over trial, the effect sizes of the first and second phases were pooled 25. Also, the effect sizes of one study over the same participants were pooled before conducting the meta-analysis 26.
All effect sizes were reported as standardized mean difference (SMD) of outcomes with their 95% confidence interval (CI), using a random-effect model to take between-study heterogeneity into account. To assess heterogeneity, the I² statistic value of 50% or more and Cochran’s Q test value of less than 0.05 were considered as significant heterogeneity. Subgroup analysis was performed to determine probable sources of heterogeneity and investigate any possible differences between studies about clinical condition, *R. Damascena* total administration dosage and duration as well as administration form, study tool, and study quality. To conduct a subgroup analysis based on total administration dosage, we converted *R. Damascena* products to a similar product or unit if possible. According to the administration dosage reported in the majority of included studies, 10 drops of *R. Damascena* was estimated as 1 mL. Also, we considered 1 mg of *R. Damascena* equal to 0.001 mL. To find the dependency of the overall estimate on the effect size from a single study, a sensitivity analysis was conducted. The Begg's and Egger's tests and also a visual inspection of funnel plots were used to assess potential publication bias. All statistical analyses were performed using Stata, version 11.2 (Stata Corp, College Station, TX). *P*-values were considered to be significant at the level of < 0.05.

3. Results

3.1. General characteristics

All included studies were conducted in Iran, and three were published in Farsi 24,29,32. Studies were conducted on individuals within the age range of 18-40 years who experienced different painful conditions. All studies were recorded only pain severity, except one which recorded frequency and dosage of administrated analgesics in addition to pain severity 30. Only one study reported mild allergic rhinitis in the *R. Damascena* group 35 (Table 2).
<table>
<thead>
<tr>
<th>Authors</th>
<th>Study design</th>
<th>Participants</th>
<th>Sample size/ age</th>
<th>Study arms</th>
<th>Intervention</th>
<th>Outcomes/ study tool (measurement times)</th>
<th>Adverse events/ findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shariati et al. 30</td>
<td>Triple-blind, controlled, 3-arm, parallel-group</td>
<td>Pregnant women with low back pain</td>
<td>I: 37/27.7 ± 0.8 C: 38/27.9 ± 0.7</td>
<td>I: R.D drop (essential oil in carrier of almond oil) + standard care C: Placebo drop (almond oil) + standard care</td>
<td>Topical application1</td>
<td>7 drops of each product (estimated as 0.7 mL), 2 times daily for 4 consecutive weeks [total dosage: 39 mL; total duration: 28 days]</td>
<td>Pregnancy-related low back pain/ VAS (baseline, 2nd week of intervention, 2 weeks after the end of intervention)</td>
</tr>
<tr>
<td>Khatibi et al. 31</td>
<td>Double-blind, controlled, 2-arm, parallel-group</td>
<td>Individuals with minor aphthous ulcers</td>
<td>I: 50/ ± 13.81 C: 50/ 24.5 ± 8.34</td>
<td>I: R.D drop + standard care C: Placebo drop (Diaphenylamine syrup) + standard care</td>
<td>Topical application1</td>
<td>10 drops of each product (estimated as 1 mL), 4 times daily for 1 week [total dosage: 28 mL; total duration: 7 days]</td>
<td>Aphthous ulcer pain/ VAS (baseline, 2nd, 4th, and 7th days of intervention)</td>
</tr>
<tr>
<td>Saleh et al. 34</td>
<td>Single-blind, controlled, 3-arm, parallel-group</td>
<td>College students with PD</td>
<td>I: 25/ 26 ± 3.8 C: 25/ 24 ± 3.1</td>
<td>I: R.D drop (essential oil in carrier of almond oil) C: Placebo drop (almond oil)</td>
<td>Topical application1</td>
<td>5 drops of each product (estimated as 0.5 mL) at the 1st day of menstruation for 2 subsequent MC [total dosage: 1 mL; total duration: 2 days]</td>
<td>Menstrual-related abdominal pain/ VAS (before and after intervention in 1st and 2nd MC)</td>
</tr>
<tr>
<td>Hoseinipour et al. 35</td>
<td>Double-blind, controlled, 2-arm, parallel-group</td>
<td>Individuals with minor aphthous ulcers</td>
<td>I: 25/ 34.4 ± 9.6 C: 25/ 33.6 ± 14.4</td>
<td>I: R.D mouthwash C: Placebo mouthwash</td>
<td>Topical application1</td>
<td>5 mL of each product, 4 times daily for 2 weeks [total dosage: 280 mL; total duration: 14 days]</td>
<td>Aphthous ulcer pain/ perceived pain rating scale (baseline and 4th, 7th, 11th and 14th days of intervention)</td>
</tr>
<tr>
<td>Fania et al. 28</td>
<td>Double-blind, controlled, 2-arm, parallel-group</td>
<td>Opioid-dependent females with methadone-related sexual dysfunction</td>
<td>I: 25/ 38.92 ± 8.31 C: 25/ 38.72 ± 7.24</td>
<td>I: R.D soft gelatin capsule (filled with 2 mL essential oil) + standard care C: Placebo soft gelatin capsule (filled with 2 mL oil-water solution) + standard care</td>
<td>Oral intake</td>
<td>One capsule of each product (estimated as 0.8 mL), daily for 8 consecutive weeks [total dosage: 112 mL; total duration: 56 days]</td>
<td>Sexual-related pain/ FSFI (baseline, 4th and 8th weeks of intervention)</td>
</tr>
<tr>
<td>Davanechi et al. 29</td>
<td>Double-blind, placebo-controlled, 4-arm, parallel-group</td>
<td>Females with PD</td>
<td>I: 27/ 22.63 ± 0.47 C: 25/ 23.08 ± 0.59</td>
<td>I: R.D hard gelatin capsule (filled with 800 mg R.D extract) + fish oil soft gelatin capsule (placebo) C: R.D hard gelatin capsule (filled with placebo) + fish oil soft gelatin capsule (placebo)</td>
<td>Oral intake</td>
<td>One capsule of each product (estimated as 0.8 mL), daily from the first day of menstruation until 60 consecutive days [total dosage: 48 mL; total duration: 60 days]</td>
<td>Menstrual-related headache and abdominal pain/ VAS (baseline, 30th and 60th days of intervention)</td>
</tr>
<tr>
<td>Ataollahi et al. 34</td>
<td>Double-blind, controlled, 2-arm, parallel-group</td>
<td>College students with PD</td>
<td>I: 55/ 21.41 ± 1.49 C: 55/ 21.38 ± 1.72</td>
<td>I: R.D oral drop C: Placebo drop (water and sugar)</td>
<td>Oral intake</td>
<td>10 drops of each product (estimated as 1 mL), 2 times daily during first 3 days of menstruation for 2 subsequent MC [total dosage: 12 mL; total duration: 6 days]</td>
<td>Menstrual-related abdominal pain/ McGill (baseline, end of 2nd MC)</td>
</tr>
<tr>
<td>Fania et al. 37</td>
<td>Double-blind, controlled, 2-arm, parallel-group</td>
<td>Females with SSRI-induced sexual dysfunction</td>
<td>I: 25/ 32.45 ± 5.68 C: 25/ 34.02 ± 6.45</td>
<td>I: R.D soft gelatin capsule (filled with 2 mL essential oil) + standard care C: Placebo soft gelatin capsule (filled with 2 mL oil-water solution) + standard care</td>
<td>Oral intake</td>
<td>One capsule of each product (estimated as 2 mL), daily for 8 consecutive weeks [total dosage: 112 mL; total duration: 56 days]</td>
<td>Sexual-related pain/ FSFI (baseline, 4th and 8th weeks of intervention)</td>
</tr>
<tr>
<td>Bani et al. 38</td>
<td>Double-blind, controlled, 2-arm, cross-over groups</td>
<td>College students with PD</td>
<td>I: 46/ 22.0 ± 2.11 C: 46/ 22.13 ± 2.06</td>
<td>I: R.D hard gelatin capsule (filled with 200 mg R.D extract) C: Mefenamic acid capsule (250 mg)</td>
<td>Oral intake</td>
<td>One capsule of each product (estimated as 0.2 mL), 4 times daily during first 3 days of menstruation for 2 subsequent MC [total dosage: 4.8 mL; total duration: 6 days]</td>
<td>Menstrual-related abdominal pain/ VAS (baseline and 1, 2, 3, 6, 12, 24, 48, 72 hours after taking the first drop during 1st and the 2nd MC)</td>
</tr>
<tr>
<td>Jamalii et al. 39</td>
<td>Double-blind, controlled, 3-arm, parallel-group</td>
<td>Females with PMS</td>
<td>I: 40/ 25.93 ± 4.68 C: 40/ 26.56 ± 3.53</td>
<td>I: R.D oral drop C: Placebo drop (distilled water)</td>
<td>Oral intake</td>
<td>15 drops of each product (estimated as 1.5 mL), 2 times daily from 14 days before menstruation until end of menstruation for 3 subsequent MC [total dosage: 180 mL; total duration: 60 days]</td>
<td>Menstrual-related headache/ DSRS (baseline, end of 7th MC)</td>
</tr>
<tr>
<td>Mostafa-Gharabaghi et al. 31</td>
<td>Double-blind, controlled, 2-arm, parallel-group</td>
<td>Females undergoing C/S</td>
<td>I: 46/ 27.78 ± 4.04 C: 46/ 22.58 ± 5.04</td>
<td>I: R.D hard gelatin capsule (filled with 400 mg R.D extract) + standard care C: Placebo hard gelatin capsule (filled with 400 mg R.D extract) + standard care</td>
<td>Oral intake</td>
<td>2 capsules of each product (each estimated as 0.4 mL), during 15 min before anesthesia [total dosage: 0.8 mL]</td>
<td>Post-operative pain/ VAS (baseline and 3, 6, 12, and 24 hours after surgery)</td>
</tr>
</tbody>
</table>

Abbreviations: C: Control; C/S: Cesarian section; DSRS: Daily symptom rating scale; DW: Distilled water; FSFI: Female sexual function index; I: Intervention; MC: Menstrual cycle; McGill: McGill pain questionnaire; min: Minutes; nrep: Not reported; nec: Not recorded; NS: Not significant; PD: Primary dysmenorrhea; PMS: Premenstrual syndrome; R.D: Rosa Damascena; Sig.: Significantly; SSRI: Selective serotonin-reuptake inhibitors; VAS: Visual analog scale.

1 Ten drops and 1 mg of R. Damascena was estimated as 1 mL and 0.001 mL, respectively. Products were self-administered topically for 100 cm² of the painful part of the skin (without massage).
2 Ten drops and 1 mg of R. Damascena was estimated as 1 mL and 0.001 mL, respectively. Products were self-administered topically on the lesions using a sterile swab (without massage) and after meals, and before sleep.
3 Products were self-administered topically on the abdomen and then the abdomen was massaged by clockwise circular movements for 15 min.
4 Products were swished around the mouth for 30 seconds and then were expelled (preferably after oral hygiene procedures).
5 Significantly lower in the intervention group compared to the comparison group after the intervention.
6 Topical application applied on the abdomen and then abdomen was massaged by clockwise circular movements for 15 min.
3.2. Topical application of *R. Damascena*

Of four studies that administered *R. Damascena* in topical form, three used 0.5-1 mL topical drop \(^{32,35,36}\), and the other one administered 5 mL mouthwash \(^{31}\). The total administration duration of *R. Damascena* products varied from 2 to 28 days. The products were self-administered without massage in all studies, except one which applied abdomen massage with *R. Damascena* essential oil \(^{36}\). All studies had a parallel-group design and two recruited only females \(^{35,36}\). The total sample size of the placebo group (i.e., Diphenhydramine syrup and almond oil) and the *R. Damascena* group were 137 and 134 (Table 2).

Based on the combined effect sizes of four RCTs, topical application of *R. Damascena* had no pain-alleviating effect (SMD: 0.10; 95% CI: -0.75, 0.96; \(P=0.814\)). Heterogeneity was significant between studies in the overall analysis (I\(^2\): 91.3%, \(P<0.001\)) (Figure 2). After excluding one study which applied *R. Damascena* using massage \(^{36}\), a non-significant reducing effect of treatment was observed (SMD: -0.06; 95% CI: -1.13, 1.00; \(P=0.906\)).

<table>
<thead>
<tr>
<th>Study ID</th>
<th>SMD (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoseinpour et al. (2011)</td>
<td>0.97 (0.38, 1.56)</td>
<td>24.37</td>
</tr>
<tr>
<td>Soledgi/Avad Shafe et al. (2015)</td>
<td>0.63 (0.03, 1.22)</td>
<td>24.32</td>
</tr>
<tr>
<td>Shamsi et al. (2017)</td>
<td>-1.10 (-1.59, -0.61)</td>
<td>25.28</td>
</tr>
<tr>
<td>Khalili et al. (2017)</td>
<td>-0.05 (-0.42, 0.30)</td>
<td>26.03</td>
</tr>
<tr>
<td>Overall (I(^2) = 91.3%, (p<0.001))</td>
<td>0.10 (-0.75, 0.98)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 2: Forest plot for the effect of topical application of *Rosa Damascena* on adults’ acute pain.
3.3. Oral intake of *R. Damascena*

Of seven studies that investigated *R. Damascena* in oral form, five administered soft or hard gelatin capsule containing either 200-800 mg extract \(^{25,26,30}\) or 2 mL essential oil \(^{27,28}\). Two remaining studies used 1 mL or 1.5 mL oral drop \(^{24,29}\). The total administration duration of *R. Damascena* products varied from 1 day to 60 days. All studies were recruited only females and had a parallel-group design, except one which was conducted with a cross-over design \(^{25}\). The total sample size of the placebo/conventional treatment group (i.e., Mefenamic acid capsule) and the *R. Damascena* group were 308 and 310 (Table 2).

Based on the combined effect sizes of seven RCTs, oral intake of *R. Damascena* reduced pain severity non-significantly compared to the placebo or conventional treatment (SMD: \(-0.55; 95\%\) CI: \(-1.27, 0.17; P= 0.132\)). A significant heterogeneity was found among the included studies for main analysis (\(I^2: 94.3, P< 0.001\)) (Figure 3). After excluding one cross-over study \(^{25}\), the results of primary meta-analysis did not change (SMD: \(-0.68; 95\%\) CI: \(-1.55, 0.20; P= 0.129\)). Based on subgroup analysis, pain severity was significantly reduced when *R. Damascena* was administered using oral drop (P= 0.024) (Table 3).

Table 3: Subgroup analysis for the effects of topical application and oral intake of *Rosa Damascena* on adults’ acute pain.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Effect sizes (n)</th>
<th>(I^2)</th>
<th>Cochran’s Q test</th>
<th>SMD (95%CI)</th>
<th>P-within</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menstrual-related pain</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.63 (0.03, 1.22)</td>
<td>0.039</td>
</tr>
<tr>
<td>Pregnancy-related low back pain</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-1.10 (-1.59, -0.61)</td>
<td><0.001</td>
</tr>
<tr>
<td>Aphthous ulcer pain</td>
<td>2</td>
<td>87.0%</td>
<td>0.006</td>
<td>0.45 (-0.53, 1.42)</td>
<td>0.372</td>
</tr>
<tr>
<td>Total administration dosage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leq 39) mL</td>
<td>3</td>
<td>90.6%</td>
<td><0.001</td>
<td>-0.18 (-1.09, 0.74)</td>
<td>0.702</td>
</tr>
<tr>
<td>280 mL</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.97 (0.38, 1.56)</td>
<td>0.001</td>
</tr>
<tr>
<td>Total administration duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leq 14) days</td>
<td>3</td>
<td>77.1%</td>
<td>0.013</td>
<td>0.49 (-0.14, 1.12)</td>
<td>0.125</td>
</tr>
<tr>
<td>28 days</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-1.10 (-1.59, -0.61)</td>
<td><0.001</td>
</tr>
<tr>
<td>Administration form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop</td>
<td>3</td>
<td>90.6%</td>
<td><0.001</td>
<td>-0.18 (-1.09, 0.74)</td>
<td>0.702</td>
</tr>
<tr>
<td>Mouthwash</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.97 (0.38, 1.56)</td>
<td>0.001</td>
</tr>
<tr>
<td>Study tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAS</td>
<td>3</td>
<td>90.6%</td>
<td><0.001</td>
<td>-0.18 (-1.09, 0.74)</td>
<td>0.702</td>
</tr>
<tr>
<td>Perceived pain rating scale</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.97 (0.38, 1.56)</td>
<td>0.001</td>
</tr>
<tr>
<td>Study quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor(^1)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-0.03 (-0.42, 0.36)</td>
<td>0.818</td>
</tr>
<tr>
<td>Fair(^2)</td>
<td>3</td>
<td>94.2%</td>
<td><0.001</td>
<td>0.16 (-1.17, 1.48)</td>
<td>0.883</td>
</tr>
</tbody>
</table>
Figure 3: Forest plot for the effect of oral intake of *Rosa Damascena* on adults’ acute pain.
3.3. Assessment of the risk of bias

Of the 11 included studies, three had good quality (low risk of bias for all items) \(^{25,27,28}\), while two had poor quality (high risk of bias in one item and unclear risk of bias in more than two items) \(^{30,32}\). The remaining six studies had fair quality (high risk of bias in one item or unclear risk of bias in one item or two items) \(^{24,26,29,31,35,36}\) (Figures 4 and 5, Table 4).

Figure 4: Risk of bias graph for studies on the effects of topical application and oral intake of *Rosa Damascena* on adults’ acute pain.
Figure 5: Summary of risk of bias within studies on the effects of topical application and oral intake of *Rosa Damascena* on adults’ acute pain.

Table 4: Assessment of risk of bias within studies with support for judgment.
<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other bias</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadeghi Aval Shahr et al. (2015)</td>
<td>High risk</td>
<td>No specific information</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>The protocol is not available</td>
<td>High risk</td>
<td>No missing outcome data, no specified funding source</td>
</tr>
<tr>
<td>Hoseinpour et al (2011)</td>
<td>Low risk</td>
<td>It was done using a computer random number generator</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>The protocol is not available</td>
<td>Low risk</td>
<td>No other sources of bias</td>
</tr>
<tr>
<td>Farnia et al (2017)</td>
<td>Low risk</td>
<td>It was done using the drawing of lots</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>The protocol is available (IRCT2015091523705N2) and all outcomes have been reported</td>
<td>Low risk</td>
<td>No other sources of bias</td>
</tr>
<tr>
<td>Davaneghi et al (2017)</td>
<td>Low risk</td>
<td>It was done using a random number table</td>
<td>Unclear risk</td>
<td>No specific information</td>
<td>Low risk</td>
<td>Missing outcome data balanced in numbers across groups</td>
<td>Low risk</td>
<td>No other sources of bias</td>
</tr>
<tr>
<td>Ataollahi et al. (2016)</td>
<td>Low risk</td>
<td>It was done using block randomization</td>
<td>Unclear risk</td>
<td>No specific information</td>
<td>Low risk</td>
<td>The protocol is available (IRCT2013112216807N10) and all outcomes have been reported</td>
<td>Low risk</td>
<td>No other sources of bias</td>
</tr>
<tr>
<td>Farnia et al (2015)</td>
<td>Low risk</td>
<td>It was done using the drawing of lots</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>The protocol is available (IRCT2013100114333N9) and all outcomes have been reported</td>
<td>High risk</td>
<td>Outcome measurements have not been reported based on the protocol</td>
</tr>
<tr>
<td>Bani et al. (2014)</td>
<td>Low risk</td>
<td>It was done using block randomization</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>The protocol is available (IRCT2013100114333N9) and all outcomes have been reported</td>
<td>Low risk</td>
<td>No other sources of bias</td>
</tr>
</tbody>
</table>
Publication bias and sensitivity analysis

With regard to topical application, no evidence of publication bias was found based on the visual inspection of the funnel plot as well as the Begg's test (P= 0.734) and Egger's test (P= 0.527). Such findings were also obtained for oral intake based on the funnel plot and also the Begg's test (P= 0.230) and Egger's test (P= 0.236) (Figure 6).
Figure 6: Funnel plots for the effects of topical application (A) and oral intake (B) of *Rosa Damascena* on adults’ acute pain.
Sensitivity analysis showed that the pooled effect sizes obtained for topical application (lower CI limit: −1.17 to −0.06; upper CI limit: 0.73 to 1.48) and oral intake (lower CI limit: −1.55 to −0.79; upper CI limit: 0.01 to 0.34) did not depend on a particular study or group of studies (Figure 7).

Figure 7: Sensitivity analysis for the effects of topical application (A) and oral intake (B) of *Rosa Damascena* on adults’ acute pain.
4. Discussion

In Asian countries, different herbs are used in traditional and complementary medicine for alleviating different painful conditions \(^{48,49}\). Recently, different products of *R. Damascena* have been used in Asian countries for their pain-alleviating properties; however, there is a paucity of comprehensive evidence to support their applications \(^{3,7,42}\). Accordingly, we performed this review to summarize the effects of topical application and oral intake of this herbal medicine on treating acute pain in adults.

Based on the meta-analysis findings, administration of oral intake of *R. Damascena* reduced pain severity non-significantly. However, the topical application of this herbal medicine had no pain-alleviating effect, which might be due to the limited number of included studies and also their undesirable methodological quality. Also, it seems that the findings obtained for topical application were affected by one study that applied *R. Damascena* using massage \(^{36}\). After excluding this study, pain severity reduced non-significantly which can justify the observed findings.

The findings of this review update the available reviews regarding the analgesic effect of *R. Damascena*. In a recent meta-analysis by Koohpayeh *et al.*, the pooled analysis of five RCTs on the effects of oral intake and aromatherapy of *R. Damascena* reduced the menstruation-related pain non-significantly [weighted mean difference (WMD): -1.39; 95% CI: -3.21, 0.43; P= 0.133] \(^{47}\). Also, in a systematic review of herbal medications for post-operative pain, Arruda *et al.* found no significant reduction in the need for analgesics after oral intake of *R. Damascena* in combination with ginger \(^{50}\). However, Nayebi *et al.* reported the analgesic effects and safety of *R. Damascena* in the forms of inhalation aromatherapy, topical treatment, or massage application on pain induced by surgery, PD, pregnancy, and aphthous ulcer \(^2\). In another systematic review, Mohebitabar *et al.* found promising evidence for the effectiveness of inhalation use of *R. Damascena* on pain of menstruation, renal colic,
and surgery. Moreover, Boskabady et al. and Mahboubi et al. reported the analgesic activities of *R. Damascena* based on the results of both *in vivo* and *in vitro* studies.

Different study objectives might be the main reason for the differences observed in the findings of previously mentioned reviews and current review. In this meta-analysis, we included only RCTs that addressed pain-alleviating effects of *R. Damascena* using oral or topical administration routes, while the above-mentioned systematic or narrative reviews neither focused specifically on the analgesic properties of *R. Damascena* nor they stratified the administration routes of this treatment. However, Nasiri et al. pooled 15 RCTs on the effect of aromatherapy with *R. Damascena* on adults’ acute pain severity and found a promising pain-alleviating effect of treatment [WMD: -2.12; 95% CI: -2.85, -1.40; P < 0.001]. Nasiri et al. included studies that evaluated the effect of *R. Damascena* in form of aromatherapy; whereas we considered oral intake or topical application of *R. Damascena* which can justify the differences in the obtained findings.

The analgesic effects of *R. Damascena* induced by oral intake or topical application have been attributed to some ingredients of this herbal medicine. Hongratanaworakit has reported the analgesic effects of *R. Damascena* oil without olfactory stimulation, and she presumed that molecules of *R. Damascena* could enter the bloodstream by dermal absorption. In a recent animal study, the non-water soluble ingredients of *R. Damascena* oil such as quercetin and kaempferol were reported as responsible for its analgesic effect. Likewise, 2-phenylethanol found in *R. Damascena* might be a pain signal inhibitor that could block pain receptors. Moreover, the topical effects of *R. Damascena* on reducing pain might be explained by the high tannin content of the extract of this herbal medicine. Further studies are recommended to determine the biochemical mechanisms responsible for analgesic activities of oral intake and topical application of *R. Damascena*.

4.1. Implications of findings
The findings of the present review can increase our understanding of the value of *R. Damascena* as a holistic care approach and non-pharmacological agent. We found that oral intake of *R. Damascena* led to a 0.55 unit reduction in pain severity. Also, the administration of *R. Damascena* was reported to be free of side effects in most included RCTs. However, we confirmed a paucity of well-designed trials in this area as most included studies had a fair or poor methodological quality. Considering the low-cost and simple application of *R. Damascena*, future studies with improved methodological quality are suggested to evaluate the pain-alleviating potencies of this herbal medicine to reach an evidence-based conclusion.

Although we used subgroup analysis, we could not find a source of between-study heterogeneity or a significant difference within subgroups in most cases, which might be due to the limited number of included studies. Based on studies that evaluated the oral intake of *R. Damascena*, it seems that pain severity reduced more when the treatment was administrated in higher dosage and longer duration and form of an oral drop. On the contrary, it seems that shorter administration duration and lower dosage could lead to more reduction in pain severity when *R. Damascena* was administrated using the topical application. Further studies are suggested to compare the effects of oral intake and topical application of *R. Damascena* on pain severity in different groups of participants with different administration durations, dosages, and forms.

4.2. Limitations

Initially, we did not receive any response or feedback from corresponding authors of the published studies in some cases when we requested further information via email. In the following, contact was made with the authors via phone call and the required details were obtained. However, estimations were made based on discussion and consensus in one study, because phone call details were not available. Second, to pool data using meta-analysis, we compared the changes of baseline and end-of-trial values due to a minor variation in
assessment time of pain severity after treatment. Hence, different choices of an endpoint may lead to different effect sizes or heterogeneities. Third, the results obtained by subgroup analysis might be affected by the limited number of studies in each subgroup. Forth, we could not perform a dose-response analysis due to the limited number of included studies and the low variations of *R. Damascena* administration dosages and durations. Finally, all studies were conducted in Iran and most recruited females; hence, the findings may not be generalized to all participants and countries.

5. Conclusion

Although the growing trend of recent RCTs about pain-alleviating effects of topical application and oral intake of *R. Damascena* provides a scientific rationale for its clinical properties, the present meta-analysis indicated that oral intake of this herbal medicine had a non-significant alleviating effect on adults’ acute pain severity. Also, the topical application of *R. Damascena* had no pain-alleviating effect. Therefore, further robust RCTs are needed to elicit reliable conclusions in this regard.
References

Graphical abstract